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Motivation

Consider a problem where

▶ Input x = (x1, x2, · · · , xD)
▶ Output y

Goal: build an explainable model y = f (x) that can be explained by
each input feature xi .



Motivation

Question: What’s the form of the decomposition of f ?

▶ f (x) =
∑d

i=1 fi (xi )?

▶ f (x) = f1(x1) + f3(x3) + f12(x1, x2)?

▶ f (x) = f123(x1, x2, x3)?

Propose Gaussian Process (GP) based model:

▶ good prediction performance

▶ lower order terms

▶ interpretable decomposition/visualisation



Gaussian Process Models

Definition: A Gaussian process is a collection of random variables,
any finite number of which have a joint Gaussian distribution.

f (x) ∼ GP(m(x), k(x , x ′)) (1)

Additive structure of the functions and kernels:
The additive structure of the function decomposition is enforced
through the structure of the kernel:

f (x) = f1(x1) + f3(x3) + f12(x1, x2)

⇐⇒ K (x , x ′) = K1(x1, x
′
1) + K3(x3, x

′
3) + K12([x1, x2], [x

′
1, x

′
2])



Goal

Consider input x = (x1, x2, · · · , xD) and output y, we aim to build
interpretable additive Gaussian Process (GP) model f of the form

y = f (x) + ϵ

where ϵ ∼ N (0, σ2) and

f (x) = f1(x1) + f2(x2) + · · ·+ f12(x1, x2) + · · ·+ f12...D(x1, x2, · · · xD)



Is High-Dimensional Representation Really Necessary?
On an 8-dimensional regression problem (Pumadyn), GP with
Orthogonal Additive Kernel (OAK) only requires
▶ two 1-dimensional main effect and
▶ one 2-dimensional interaction effect

for competitive performance.
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Figure: Visualization of the decomposed functions with highest Sobol
indices for the pumadyn dataset. Over 99% of the variance can be
explained with only these three terms.



Why it Appears to be High-Dimensional? — Orthogonality

Problem: If

f (x1, x2) = f1(x1) + f12(x1, x2), (2)

then f1 + δ, f12 − δ are correct decompositions for any value of δ
(Märtens, 2019).



Why it Appears to be High-Dimensional? — Orthogonality

f (x1, x2) = x21 − 2x2 + cos(3x1) sin(5x2) (3)
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Figure: Illustration of the non-identifiability of the additive GP model in
Duvenaud et al. (2011) on the two-dimensional problem, for two different
decomposition with the same predictive performance.



How to Circumvent it?

We can get low-dimensional representation of

y = f1(x1) + f2(x2) + · · ·+ f12(x1, x2) + · · ·+ f12...D(x1, x2, · · · xD)

with

▶ Orthogonality Constraints (Durrande et al., 2012)

▶ Scalability for Additive Models (Duvenaud et al., 2011)

▶ Sobol Index as Measure of Importance (Owen, 2014)



Constrained Kernel

Denote the density of input xi with p(xi ) and kernel of fi with ki ,
we enforce orthogonality constraints:∫

fi (xi )p(xi )dxi = 0 ∀i , (4)∫
fij(xi , xj)p(xi )dxi = 0 ∀i , j (5)

· · · (6)

=⇒ fi ∼ GP(0, k̃i ).

If

▶ p(xi ) is uniform, (mixture) of Gaussian or approximated using
empirical dsitribution

▶ base kernel ki is squared exponential kernel for continuous
feature or coregional kernel for categorical feature

then k̃i is analytic and can be easily plugged in popular GP code.



Orthogonal Additive Kernel (OAK)

y = f1(x1) + f2(x2) + · · ·+ f12(x1, x2) + · · ·+ f12...D(x1, x2, · · · xD)

where

fi (xi ) has kernel σ
2
1 k̃i (xi ) (7)

fij(xi , xj) has kernel σ
2
2 k̃i (xi )k̃j(xj) (8)

fijk(xi , xj , xk) has kernel σ
2
3 k̃i (xi )k̃j(xj)k̃k(xk) (9)

· · · (10)

▶ Newton-Girard trick allows for polynomial time complexity
O(D2)



Newton-Girard Algorithm

Input: input dimension D
Input: maximum interaction order D̃
Input: base kernels kd(·, ·), d = 1 . . .D
Input: order variances σl , l = 0 . . . D̃
Data: input data X
Output: kernel matrix K
for d = 1 . . .D do

Kd [i , j ] = kd(xi,d , xj,d)
end for
for ℓ = 0 . . . D̃ do

Sℓ =
∑D

d=1 K
ℓ
d

end for
E0 = 1[N,N]

for ℓ=1. . . D̃ do
Eℓ =

1
ℓ

∑ℓ
k=1(−1)k−1Eℓ−k ⊙ Sk

end for
K =

∑D̃
ℓ=0 σℓ × Eℓ



Illustration

f (x1, x2) = x21 − 2x2 + cos(3x1) sin(5x2) (11)
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Figure: Illustration of the non-identifiability of the additive GP model in
Duvenaud et al. (2011) on the two-dimensional problem. Top row:
additive GP model; bottom row: OAK model.



Sparse GP with Inducing Points

▶ Burt et al. (2019) showed that the number of inducing points
M needed is M = O(logDN).

▶ In practice, one can limit the maximum order of interactions to
be D̃ ≤ D. The number of kernels to be added for OAK is∑D̃

k=1

(D
k

)
and the number of inducing points needed is

D̃∑
k=1

(
D

k

)
O(logkN) = O

((
D

D̃

)
log D̃N

)
.



Sparse GP with Inducing Points
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Figure: Test RMSE versus number of inducing points for the pumadyn
dataset. Results are averaged over 5 repetitions, shaded area represents
±1 standard deviation.



Interpretability — How to find parsimonious representation?

Q: What features (interactions) are most important?

f (x) = f1(x1) + f2(x2) + · · ·+ f12(x1, x2) + · · ·+ f12...D(x1, x2, · · · xD)

Can we decompose varx[f (x)]?



FANOVA Decomposition and Sobol Indices

▶ OAK construction leads to the FANOVA decomposition:

fu(x) =

∫
X−u

(
f (x)−

∑
v⊂u

fv (xv )

)
dP(x−u), (12)

where f∅(x) = E[f (x)], x−u denotes x excluding xu and P(x)
denotes the distribution of x.

▶ The orthogonality of OAK leads to the ANOVA identity:

R := Vx[f (x)] =
∑
u⊆[D]

Ru, (13)

where Ru := Vx[fu(x)] is defined as the Sobol index for feature
set u.

▶ Sobol indices are analytic with OAK!



Normalising Flow

We use a normalizing flow to transform continuous input features to
have an approximate Gaussian density:

▶ applying a sequence of bijective transformations on each feature

▶ learn the parameters of the transformation by minimizing the
KL divergence between a standard Gaussian distribution and
the transformed input data

▶ The parameters are fixed before fitting the OAK model on the
transformed data



Experiments – Interpretability (SUSY)
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Figure: Decomposition of top 10 important functions for SUSY dataset,
ranked by their Sobol indices.



Experiments – Competitive Performance

Figure: Average results over 24 regression datasets shown in terms of test
RMSE and log likelihood (top two blocks). Average results over 29
classification datasets shown in terms of accuracy and log likelihood
(bottom two blocks).



Experiments – Parsimony
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Figure: AuC as a function of number of terms added ranked by their Sobol
indices for the SUSY experiments. Red solid lines and green dashed lines
represent test AuC and cumulative (normalized) Sobol respectively.



Future Work

▶ non-independent input features

▶ heteroscedastic noise

▶ Bayesian optimisation/experimental design



Thank you!

We have open sourced our code: https://github.com/amzn/
orthogonal-additive-gaussian-processes

https://github.com/amzn/orthogonal-additive-gaussian-processes
https://github.com/amzn/orthogonal-additive-gaussian-processes
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