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Solving Tasks with Robots

Agent:

Xt+1

v

u; = m(xs; 0)

World

Task Description:

Cook dinner for me /\\-'V\

—

World & Robot
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Solving Tasks with Robots

Engineering Approach
Agent:
Xt+1
> Uy = T[(xt; 9)
Ct
World

Cost Function:

xT=xd

World & Robot 1%
Xe = f(x,ue)
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Solving Tasks with Robots

Engineering Approach Reinforcement Learning
Agent: Agent:
Xt+1 Xt+1
> Uy = T[(xt, 9) > U = ﬂ(xt, 9)
Ct Ct
World World

Cost Function:

xT=Xd

World & Robot 1% ]
Xe = f(x,ue) ‘ﬁ)
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Solving Tasks with Robots

Engineering Approach Reinforcement Learning Reinforcement Learning
+ Domain Knowledge

Agent: Agent: Agent.
Xt+1 p Xt+1 Xt+1 ( 9)
c, t (x¢;0) c, c t t
World World World
Cost Function: Cost Function:
Xt = Xgq ce = g(x,ug)

World & Robot 1% 1% ]
Xe = f(x,ue)
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.... and many ‘classical’ robot learning has been doing this years IHE

Tabletennis Ball Catching Ball Catching
(Milling; Kober; Kromer; Lampert; Scholkopf; Peters; 2013) (Patzwahl*; Lutter; Peters; 2020) (Ploger*; Lutter*; Peters; 2020)
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From single movements to complex behaviors

Low Task Complexity

Use task specific knowledge to structure
representations & optimization

C~__,

Paddle Juggling (Aboaf et. al., 1988,)

Ball in a Cup (Kober & Peters, 2009)
Pancake Flipping (Kormushev et. al., 2010)
Tabletennis (Muelling et. al., 2013)

Toss Juggling (Ploeger et. al., 2020)
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Overview IE ﬂE

= |ntroduction

= Differential Equations as Prior for Deep Networks

= Robotics Control Applications:

= Deep Lagrangian Networks — Learning physically plausible Models

= HJB Feedback Control — Exploiting the HIB Equation for Optimal Feedback Control

=  Conclusion
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First-Order Principles as Model Prior for Deep Networks

Deep Neural Network First-Order Differential Equation

d dL 9l
dtdq oq °
d
oH q oH
dt ~0q TP
pV*=q+ a’vy —g(-B V)

F=mxXx

= Meaningful representations suitable for the physical system
= |nterpretability enabling connecting theory to learning

= Sample Efficiency enabling learning on single instances
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First-Order Non-Linear Differential Equations with Deep Networks IHE

Deep Differential Network First-Order Differential Equation

o Ef@ af (x)
2 , = Fx f(x), 0
iy L L i} )"

19 (%)
O— {H—J: 9
N 2
df (x;;0
6* = argminz F (xi,f(xi; H), f( ' )>
0 0x

=0
with X; € QO CR"

Michael Lutter | Inductive Biases for Robot Control| University College London



First-Order Non-Linear Differential Equations with Deep Networks IHE

f(z,y) = cos(x)sin(y) | ()cos(y)
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Overview IE ﬂE

= |ntroduction

= Deep Learning and Differential Equations

= Robotics Control Applications:

= Deep Lagrangian Networks — Learning physically plausible Models

= HJB Feedback Control — Exploiting the HIB Equation for Optimal Feedback Control

=  Conclusion
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Deep Lagrangian Networks (DeLaN)

Physical plausibility, i.e., every possible parameter
configuration is a mechanical system.

Kinetic Energy Potential Energy . . .
Interpretability, i.e., the learned force decomposition
[ = = 7He | T | — 7 resembles inertial, centrifugal, Coriolis & gravitational
forces

Unsupervised Learning, i.e., the learned system

d 0L 6L energies are not directly observable and can only be
— learned unsupervised

—— =T

dtdqg o0q

Multiple Models, i.e., the learned representation can
be used as forward, inverse & energy model
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DelLaN: Model Representation

Model Representation Physics Prior

\ 4

f& T™a *

|:||:| H q"Hq T
Xdt
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Lagrangian Mechanics Conservation of Energy

()—H-l( 1&1'+1<a 'TH') av) ith H being p.d
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DelLaN: Model Representation

Model Representation Physics Prior Parameter Optimization

. Lagrangian Mechanics . Conservation of Energy

f()—H‘l(t—H'+1(a 'TH’)—aV) ith H being p.d

) = q > aqq q 3 Wi eing p.d.
. 1/0 1%

10y = Hi H'—-(—'T ) v

=) "+"zaquq+aq

E(.)=T+V
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DelLaN: Learned Decomposition

T H(q)q c(q,q) g(q)
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DelLaN: Learned Energy Control IHE

DelaN Analytic Model System Identification
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DelLaN: Learned Energy Control

DelLaN Analytic Model System Identification
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DelLaN: Online Learned Tracking Control

Training Testing

2X
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DelLaN: Online Learned Tracking Control

Sim WAM - Cosine 0 Sim WAM - Cosine 1 Barrett WAM - Cosine 2 Barrett WAM - Cosine 3
10% 5 104 | 10% 5 10% 5
103 5 1034 103 - 10
102 5 1024 | 102 102 -
10" 3 10t 10" ; 10" 5
10° 100 { W 10° 10° 5

i i Test Data 1 i Test Data : Test Data ] Test Data
10_1 L T T T T 10_1 L T T T T 10_1 T T T T T 10_1 T T T T T
1 125 15 175 2 225 1 125 15 175 2 225 1 1.25 15 1.75 2 1 1.25 1.5 1.75 2
Velocity Scale Velocity Scale Velocity Scale Velocity Scale
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Michael Lutter | Inductive Biases for Robot Control| University College London 23



Overview IE ﬂE

= Introduction
= Deep Learning and Differential Equations

= Robotics Control Applications:

= Deep Lagrangian Networks — Learning physically plausible Models

= HJB Feedback Control — Exploiting the HIB Equation for Optimal Feedback Control

=  Conclusion
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HJB-Feedback Control: Problem Statement

Value Function Optimal Feedback Control, i.e., optimal policy that
does not require replanning or sampling of actions.

S
[
~

Action Constraints, i.e., principled cost functions that
shape the optimal policy to be action limited

Interpretability, i.e., capable of linking the concepts
of stability and robustness to the learned solution

Assumptions:

_ ~c Ty " mechanical System with holonomic constraints
n Vg( B V;c ) = separable cost function, i.e., ¢ = q(x) + g(u)
= strictly convex action cost g(u)

g is the convex conjugate of g(u)
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HIJB-Feedback Control: Principled Cost for Action Constraints

Action Cost:
g(x)

+ U,
Optimal Policy:
0.0 1
Vg(-B"Vy)
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HIB-Feedback Control: Curriculum Learning

The solution to the optimization problem is only unique
and stable if the boundary condition

(a+Bu)"n(x) <0 for x€ I
(a+BYG(-B";)) n@) < 0

is fulfilled. Therefore, the naive optimization does not
necessarily learn the optimal and stable V™.

=> How can one ensure coherent solutions given local
boundary constraints and local function approximators?
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HJB-Feedback Control: 1d Integrator

Value Function V' (x) Position Trajectory Action Trajectory

Value Function V(x)

Position Trajectory

Action Trajectory

10" A I (O =
107" 1
44 —1 1
103
72 -
— 10" — 3 w
E £ £
-1 o = _q
u 10 . 53
107 i i ! i i 4 == HJB Control
Kok 14 == Single-Shooting
10 4 % —= | QR
= =57 X Control Cost
101 ode e S —— | = T T
1073 L— ; . ; ; ; ; ; ; ; ; 1073 L— ; ; ; ; ; —6 1 ;
B 2 4 0 1 2 3 4 0 1 2 3 4 e 2 4 0 2 4 6 0 2 4 6
System State x Time [s] Time [s] System State x Time [s] Time [s]
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HJB-Feedback Control: Torque Limited Pendulum IHE

+10.0 Value Function of Torque Limited Pendulum

Epoch 0010

6 [rad/s]

- 10

-7 —7/2 | 0
6 [rad]
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HJB-Feedback Control: Torque Limited Pendulum
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Summary

= Differential Equations as Model Prior for Deep Networks:
(1) Using differential equations as model prior enables learning of meaningful & interpretable representations

(2) Combining differential equations and deep networks is natural as these networks are fully differentiable

= Deep Lagrangian Networks:
(1) Introduced physics prior to deep learning to enable unsupervised learning of the underlying structure.

(2) Demonstrated that these deep networks models can be used for real-time energy control with up to 500Hz.

= HJB-Feedback Control:
(1) Derived principled action cost from the Hamilton-Jacobi-Bellman differential equation.

(2) Demonstrated that solving the HIB with a differential network obtains an optimal feedback policy
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