Aligning Time Series on Incomparable Spaces

Abstract

Dynamic time warping (DTW) is a useful method for aligning, comparing and combining time series, but it requires them to live in comparable spaces. In this work, we consider a setting in which time series live on different spaces without a sensible ground metric, causing DTW to become ill-defined. To alleviate this, we propose Gromov dynamic time warping (GDTW), a distance between time series on potentially incomparable spaces that avoids the comparability requirement by instead considering intra-relational geometry. We demonstrate its effectiveness at aligning, combining and comparing time series living on incomparable spaces. We further propose a smoothed version of GDTW as a differentiable loss and assess its properties in a variety of settings, including barycentric averaging, generative modeling and imitation learning.

Publication
Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS)
Samuel Cohen
Samuel Cohen
PhD Student
Alexander Terenin
Alexander Terenin
PhD (10/2018-11/2021)
Marc Deisenroth
Marc Deisenroth
Google DeepMind Chair of Machine Learning and Artificial Intelligence