Sustainability and Machine Learning Group
Sustainability and Machine Learning Group
Home
Team
Publications
Blog
Teaching
Talks
News
Openings
1
Visibility Metric for Visually Lossless Image Compression
Nanyang Ye
,
Marıa Pérez-Ortiz
,
Rafał K Mantiuk
Cite
Maximizing Acquisition Functions for Bayesian Optimization
Bayesian optimization is a sample-efficient approach to global optimization that relies on theoretically motivated value heuristics …
James Wilson
,
Frank Hutter
,
Marc P. Deisenroth
PDF
Cite
Code
Orthogonally Decoupled Variational Gaussian Processes
Hugh Salimbeni
,
Ching-an Cheng
,
Byron Boots
,
Marc P. Deisenroth
PDF
Cite
Code
Meta Reinforcement Learning with Latent Variable Gaussian Processes
Steindór Sæmundsson
,
Katja Hofmann
,
Marc Deisenroth
PDF
Cite
Code
Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control
Sanket Kamthe
,
Marc P. Deisenroth
PDF
Cite
Code
A mixture of experts model for predicting persistent weather patterns
M. Perez-Ortiz
,
P.A. Gutierrez
,
P. Tino
,
C. Casanova-Mateo
,
S. Salcedo-Sanz
Cite
Design of Experiments for Model Discrimination Hybridising Analytical and Data-Driven Approaches
Simon Olofsson
,
Marc P. Deisenroth
,
Ruth Misener
PDF
Cite
Gaussian Process Conditional Density Estimation
Vincent Dutordoir
,
Hugh Salimbeni
,
Marc P. Deisenroth
,
James Hensman
PDF
Cite
Psychometric scaling of TID2013 dataset
Aliaksei Mikhailiuk
,
Maria Perez-Ortiz
,
Rafal K. Mantiuk
Cite
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Hugh Salimbeni
,
Marc P. Deisenroth
PDF
Cite
Code
«
»
Cite
×