Sustainability and Machine Learning Group
Sustainability and Machine Learning Group
Home
Team
Publications
Blog
Teaching
Talks
News
Openings
1
Interpretable Deep Gaussian Processes for Geospatial Tasks
Daniel Augusto De Souza
,
Daniel Giles
,
Marc P. Deisenroth
Cite
Thin and Deep Gaussian Processes
Gaussian processes (GPs) can provide a principled approach to uncertainty quantification with easy-to-interpret kernel hyperparameters, …
Daniel Augusto De Souza
,
Alexander Nikitin
,
S. T. John
,
Magnus Ross
,
Mauricio A. Álvarez
,
Marc P. Deisenroth
,
João P. P. Gomes
,
Diego Mesquita
,
César Lincoln Mattos
Cite
Reviews
PDF
Code
Neural Field Movement Primitives for Joint Modelling of Scenes and Motions
This paper presents a novel Learning from Demonstration (LfD) method that uses neural fields to learn new skills efficiently and …
Ahmet Tekden
,
Marc P. Deisenroth
,
Yasemin Bekiroğlu
Cite
PDF
Sliding Touch-based Exploration for Modeling Unknown Object Shape with Multi-finger Hands
Efficient and accurate 3D object shape reconstruction contributes significantly to the success of a robot’s physical interaction …
Yiting Chen
,
Ahmet E. Tekden
,
Marc P. Deisenroth
,
Yasemin Bekiroğlu
Cite
PDF
Safe Trajectory Sampling in Model-based Reinforcement Learning
Model-based reinforcement learning aims to learn a policy to solve a target task by leveraging a learned dynamics model. This approach, …
Sicelukwanda Zwane
,
Denis Hadjivelichkov
,
Yicheng Luo
,
Yasemin Bekiroğlu
,
Dimitrios Kanoulas
,
Marc P. Deisenroth
Cite
PDF
Blog
Understanding Deep Generative Models with Generalized Empirical Likelihoods
Understanding how well a deep generative model captures a distribution of high-dimensional data remains an important open challenge. It …
Suman Ravuri
,
Melanie Rey
,
Shakir Mohamed
,
Marc P. Deisenroth
Cite
PDF
Queer In AI: A Case Study in Community-Led Participatory AI
We present Queer in AI as a case study for community-led participatory design in AI. We examine how participatory design and …
Organizers of Queer in AI
,
Anaelia Ovalle
,
Arjun Subramonian
,
Ashwin Singh
,
Claas Voelcker
,
Danica J. Sutherland
,
Davide Locatelli
,
Eva Breznik
,
Filip Klubička
,
Hang Yuan
,
Hetvi J
,
Huan Zhang
,
Jaidev Shriram
,
Kruno Lehman
,
Luca Soldaini
,
Maarten Sap
,
Marc Peter Deisenroth
,
Maria Leonor Pacheco
,
Maria Ryskina
,
Martin Mundt
,
Melvin Selim Atay
,
Milind Agarwal
,
Nyx McLean
,
Pan Xu
,
A Pranav
,
Raj Korpan
,
Ruchira Ray
,
Sarah Mathew
,
Sarthak Arora
,
St John
,
Tanvi Anand
,
Vishakha Agrawal
,
William Agnew
,
Yanan Long
,
Zijie J. Wang
,
Zeerak Talat
,
Avijit Ghosh
,
Nathaniel Dennler
,
Michael Noseworthy
,
Sharvani Jha
,
Emi Baylor
,
Aditya Joshi
,
Natalia Y. Bilenko
,
Andrew McNamara
,
Raphael Gontijo-Lopes
,
Alex Markham
,
Evyn Dǒng
,
Jackie Kay
,
Manu Saraswat
,
Nikhil Vytla
,
Luke Stark
Cite
URL
Deep Grasp Adaptation through Domain Transfer
Learning-based methods for robotic grasping have been shown to yield high performance. However, they rely on expensive-to-acquire and …
Yiting Chen
,
Junnan Jiang
,
Ruiqi Lei
,
Yasemin Bekiroğlu
,
Fei Chen
,
Miao Li
Cite
Optimal Transport for Offline Imitation Learning
With the advent of large datasets, offline reinforcement learning is a promising framework for learning good decision-making policies …
Yicheng Luo
,
Zhengyao Jiang
,
Samuel Cohen
,
Edward Grefenstette
,
Marc P. Deisenroth
Cite
PDF
Reviews
Code
Actually Sparse Variational Gaussian Processes
A typical criticism of Gaussian processes is their unfavourable scaling in both compute and memory requirements. Sparse variational …
Jake Cunningham
,
Daniel Augusto de Souza
,
So Takao
,
Mark Van Der Wilk
,
Marc P. Deisenroth
Cite
PDF
Code
«
»
Cite
×